Programming Reinforcement Learning in Jason

August 26, 2016

Amelia Bădică¹, Costin Bădică¹, Mirjana Ivanović²

¹University of Craiova, Romania ²University of Novi Sad, Serbia

16th Workshop on Software Engineering Education Jahorina, Bosnia and Herzegovina

Talk Outline

- Introduction, Motivation and Related Works
- Temporal Difference Learning
- AgentSpeak(L) and Jason
- Jason Framework for TD Learning
- Results and Discussions

Conclusions

Q: Experiment with using state-of-the-art AOP languages for agent learning

Agent Oriented Programming

 Historically, AOP was firstly proposed more than 20 years ago (Shoham, 1990) as:

A <u>new programming paradigm</u>, one based on <u>cognitive</u> and <u>societal</u> view of computation

There are many models / implementations of AOP.

Reinforcement Learning

- An RL agent is using the *observed rewards* (known also as *reinforcements*) part of its percepts, to learn an *optimal policy* for acting in an uncertain and dynamic environment (Sutton, 1998).
 - <u>Passive RL</u>: agents act according to a fixed policy and their learning goal is to compute the utility function.
 - <u>Active RL:</u> agents learn an optimal policy that maximizes their utility, while they are acting in their environment.

Benefits of Combining AOP and RL

- From the AOP perspective, RL algorithms can provide a *good benchmark* for experimenting with AOP languages.
- For RL, AOP can be an interesting approach supporting *sound programming principles* for the development of software agent systems.
- Mixing AOP and RL results in new forms of *hybrid reasoning* that benefit by combining different reasoning mechanisms with complementary features into a single cognitive architecture (e.g. *BDI reasoning* and *learning*).

Temporal Difference Learning

- Markovian environment E.
- Stochastic environment.
- The agent strategy is called *policy* $\pi : E \to A$ where $a = \pi(e)$ is the action carried out by agent in state *e* of the environment.
- TDL is a *passive* RL method, i.e.:
 - \Box the policy π is given, and
 - the agent's goal is to determine the utilities of states.

Markovian Environment

- The *environment* has a finite set *E* of states.
- The agent has a finite repertoire *A* of *available actions*.
- The next environment state e' depends only on the current state e and the agent action a; earlier environment states and agent actions are ignored.

Some agent states are *terminal* (*final* or *goal*) *states*.

Stochastic Environment

• $p(e' \mid e, a)$ is the *probability* of the environment to transit into state e' given its current state e and agent action *a*.

■ *p* is a *probability distribution* i.e. $\sum_{e'} p(e' \mid e, a) = 1$ for all $e \in E$ and $a \in A$.

Utility Function

- In each state *e* of the environment the agent receives a *reward* $R(e) \in IR$.
- An agent *percept* is a pair (e, R(e)).
- The agent utility depends on the rewards received on each state of the environment history $H(e) = [e = e_0, e_1, e_2, ...]$:
 - The utility function is *additive* with *discounted rewards*: $U_b([e_0, e_1, e_2, ...]) = \sum_{i \ge 0} \gamma^i R(e_i)$, where $\gamma \in (0,1]$ is the *discount factor*.
 - The utility U^π(e) for policy π is the weighted average of the utilities of each possible environment history H(e) starting in state e, i.e.:
 U^π(e) = E[U_b(H(e))].

Temporal Difference Equation

When the agent observes a transition $e \rightarrow e'$, (s)he updates $U^{\pi}(e)$ as follows:

 $U^{\pi}(e) \leftarrow U^{\pi}(e) + \alpha [R(e) + \gamma U^{\pi}(e') - U^{\pi}(e)]$

- α parameter is called *learning rate*. Usually α is monotonically decreasing with the number n(e) of times the environment is in state e.
- TDL does not need to estimate the stochastic model of the environment !

AgentSpeak(L) and Jason

- AgentSpeak(L) is an abstract AOP language, introduced by Rao in 1996.
- Jason is an implementation, as well as an extension of AgentSpeak(L), based on Java.
 - □ The *agent program* is written in Jason.
 - □ The *environment* (management of environment state, agent percepts, effect of agent actions) are written in Java.
 - □ Agent architecture can be customized in Java.

Agent Program

- Belief base set of Prolog-like facts & rules and it represents the *agent memory*.
- Plans define the agent know-how. A plan is composed of event, context and body:

$$e : c < -b$$

• The belief base is continuously updated by plans during the *agent reasoning cycle*.

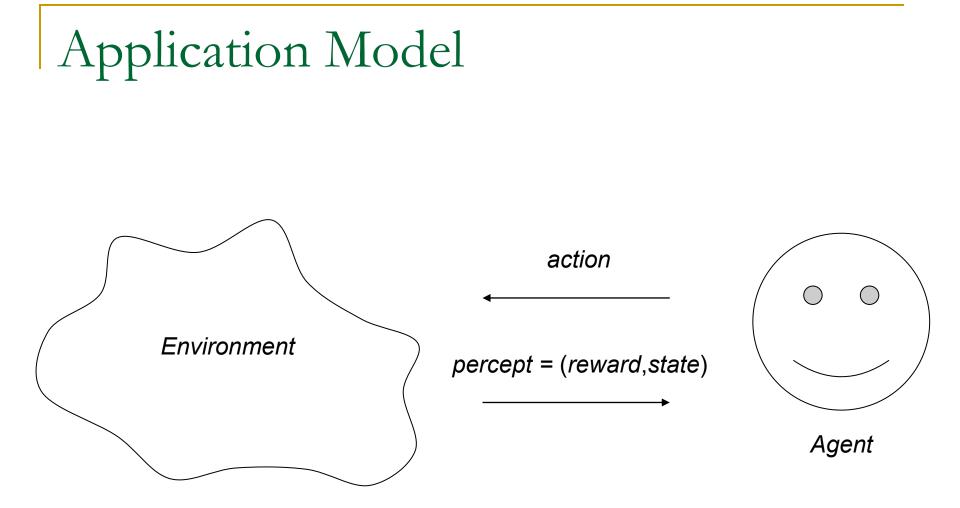
- The agent is working towards reaching *achievement goals* !G.
- *Test goals* ?*G* used to retrieve information from belief base.

Using *goals* & *events* allows to have controllable flexibility in plans.

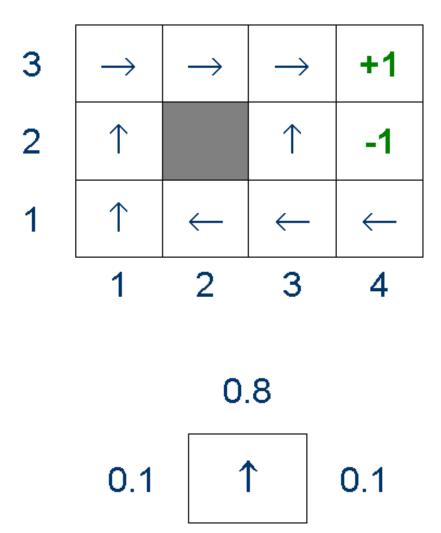
Environment Code

Environment class.

- □ *init*() to initialize the environment.
- executeAction() to update the environment state after the execution of each agent action (represented as a structured term using *Structure* class
- addPercept() to add percepts (represented using Literal class) to the environment.



Sample Environment and Agent Policy



16th Workshop on Software Engineering Education Jahorina, Bosnia and Herzegovina

Agent Actions and Percepts

Agent actions:

- □ up, right, down, left for the agent movement
- *null*, for restarting a new trial in a random initial position.
- Agent percepts *pos*(*Row*, *Column*, *R*, *T*) such that:
 - □ *Row* and *Column* give the agent position on the grid
 - \Box R is the reward.
 - T is *n* for non-terminal state and *t* for terminal state

Environment Data Structures

- An $m \times n$ grid is represented using a Boolean table *walls* and a real table *rewards* of sizes $0 \dots m+1 \times 0 \dots n+1$. They are extra padded with 2 rows and 2 columns representing the grid walls as obstacles.
- Agent actions are represented using *AgAction* enumeration: UP(0), RIGHT(1), DOWN(2), LEFT(3), NULL(4).
- Direction of action is represented using *Direction* enumeration: CHANGE_LEFT(0), KEEP(1), CHANGE_RIGHT(2).
- The offsets of the next agent position from the current agent position is determined based on the agent action and direction, using tables *incRows* and *incColumns*.

Agent Belief Base

- <u>Counter of states</u>: *last_state(StateCounter)*, initially 0.
- <u>Counter of trials: last_trial(TrialCounter)</u>, initially 0.
- Last executed action: last_action(Action), initially null.
- terminal_state(State) and non_terminal_state(State) used in test goals to check if agent's current state is or not a final state.
- <u>Upper bound of number of iterations</u>: represented with *limit(UpperBound)* and checked with *below_limit(N)*.
- <u>Agent's fixed policy</u>: a set of facts *policy(State, Action)*, *State = s(Row, Column)*.
- <u>Utility value and number of visits of each state</u>: *utility(State,UtilityValue,Counter)*.

Agent Plan Base – !keep_move

+!keep_move : pos(I,J,R,T) <- // Last perc. pos(I,J,R,T)
 ?last_action(A); // Determine the last action
 St = s(I,J,T); // Det. the currently perceived state
 !update(St,R,A); // Update for reaching state St with act A
 ?last_state(S);
 M = S+1; // Incr counter for reaching crt state S
 -+last_state(M);
 -+state(M,pos(A,St,R)); // Save last state trans in BB
 !continue_move(M,St). // continue moving</pre>

Additional Agent Plans

!continue_move(M,St)

- □ Controlled by *below_limit(M)* and *terminal_state(St)*
- □ Take one action by adopting goal !*do_one_move(St*)

□ Call !keep_move

!update(St,R,A)

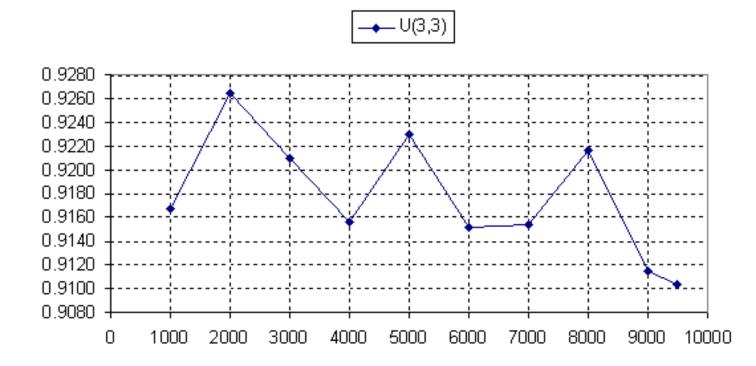
Update utility functions

Experiments

- 8 program runs
- 50000 iterations, iteration = state visit
- Number of trials: 9358 (min), 9470.625 (avg), 9528 (max)
- We recorded utility values after each 1000 × k trials, for k = 1, 2, ..., 9, and the end of run

Results

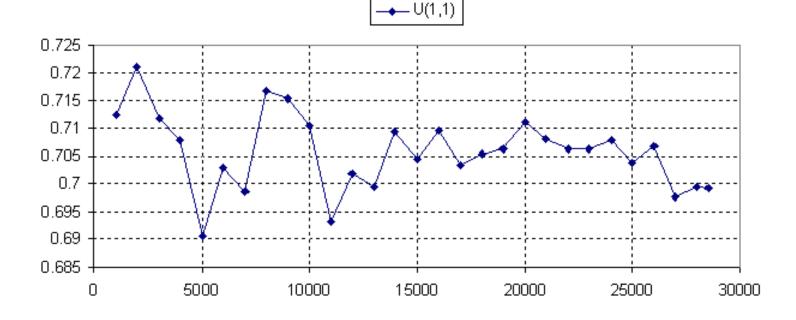
• $U^{\pi}(3; 3)$ vs number of trials. The average number of visits is n(3; 3) = 9281.625



16th Workshop on Software Engineering Education Jahorina, Bosnia and Herzegovina

Optimizing Tail Recursion

- We have replaced the tail recursive calls to !*keep_move* with !!*keep_move*, to make the execution of recursive plans more efficient by optimizing tail recursion as iteration.
- 1 run for 150000 of iterations and 28542 trials.



16th Workshop on Software Engineering Education Jahorina, Bosnia and Herzegovina

Other Developments

- Experiments with other types of agents:
 - □ Agents with faulty perception
- A GUI tool for setting up experiments with TDL
- Extending the framework to active RL methods:
 - **Q**-learning
 - □ SARSA
- Extending the framework for MAS RL

- Development of a Jason program that implements a Temporal Difference Learning agent.
- Representation of TDL problem using BDI concepts: beliefs, plans and goals.
- Further developments and future works

