
August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Programming Reinforcement

Learning in Jason

Amelia Bădică1, Costin Bădică1,
Mirjana Ivanović2

1University of Craiova, Romania
2University of Novi Sad, Serbia

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Talk Outline

 Introduction, Motivation and Related Works

 Temporal Difference Learning

 AgentSpeak(L) and Jason

 Jason Framework for TD Learning

 Results and Discussions

 Conclusions

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Motivation

 Q: Experiment with using state-of-the-art

AOP languages for agent learning

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Oriented Programming

 Historically, AOP was firstly proposed more than

20 years ago (Shoham, 1990) as:

A new programming paradigm, one based on

cognitive and societal view of computation

 There are many models / implementations of AOP.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Reinforcement Learning

 An RL agent is using the observed rewards (known

also as reinforcements) part of its percepts, to learn an

optimal policy for acting in an uncertain and dynamic

environment (Sutton, 1998).

 Passive RL: agents act according to a fixed policy and

their learning goal is to compute the utility function.

 Active RL: agents learn an optimal policy that maximizes

their utility, while they are acting in their environment.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Benefits of Combining AOP and RL

 From the AOP perspective, RL algorithms can provide a
good benchmark for experimenting with AOP languages.

 For RL, AOP can be an interesting approach supporting
sound programming principles for the development of software
agent systems.

 Mixing AOP and RL results in new forms of hybrid reasoning
that benefit by combining different reasoning mechanisms
with complementary features into a single cognitive
architecture (e.g. BDI reasoning and learning).

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Temporal Difference Learning

 Markovian environment E.

 Stochastic environment.

 The agent strategy is called policy : E A where

a = (e) is the action carried out by agent in state e

of the environment.

 TDL is a passive RL method, i.e.:

 the policy is given, and

 the agent’s goal is to determine the utilities of states.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Markovian Environment

 The environment has a finite set E of states.

 The agent has a finite repertoire A of available actions.

 The next environment state e’ depends only on the current

state e and the agent action a ; earlier environment states

and agent actions are ignored.

 Some agent states are terminal (final or goal) states.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Stochastic Environment

 p(e’ | e , a) is the probability of the environment to

transit into state e’ given its current state e and agent

action a.

 p is a probability distribution i.e. ∑e’p(e’ | e , a) = 1 for

all e E and a A.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Utility Function

 In each state e of the environment the agent receives a

reward R(e) IR.

 An agent percept is a pair (e , R(e)).

 The agent utility depends on the rewards received on each

state of the environment history H(e) = [e = e0, e1, e2, ...]:

 The utility function is additive with discounted rewards: Uh([e0, e1, e2, ...])

= ∑i 0
i R(ei), where (0,1] is the discount factor.

 The utility U(e) for policy is the weighted average of the utilities of

each possible environment history H(e) starting in state e, i.e.:

 U(e) = E[Uh(H(e))].

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Temporal Difference Equation

 When the agent observes a transition e e’, (s)he

updates U(e) as follows:

U(e) U(e) + [R(e) + U(e’) – U(e)]

 parameter is called learning rate. Usually is

monotonically decreasing with the number n(e) of

times the environment is in state e.

 TDL does not need to estimate the stochastic

model of the environment !

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

AgentSpeak(L) and Jason

 AgentSpeak(L) is an abstract AOP language,

introduced by Rao in 1996.

 Jason is an implementation, as well as an extension

of AgentSpeak(L), based on Java.

 The agent program is written in Jason.

 The environment (management of environment state, agent

percepts, effect of agent actions) are written in Java.

 Agent architecture can be customized in Java.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Program

 Belief base set of Prolog-like facts & rules and it

represents the agent memory.

 Plans define the agent know-how. A plan is composed

of event, context and body:

e : c <- b

 The belief base is continuously updated by plans

during the agent reasoning cycle.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Goals

 The agent is working towards reaching achievement goals !G.

 Test goals ?G – used to retrieve information from belief base.

 Using goals & events allows to have controllable flexibility in

plans.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Environment Code

 Environment class.

 init() – to initialize the environment.

 executeAction() – to update the environment
state after the execution of each agent action
(represented as a structured term using
Structure class

 addPercept() – to add percepts (represented
using Literal class) to the environment.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Application Model

Environment

Agent

action

percept = (reward,state)

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Sample Environment and Agent Policy

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Actions and Percepts

 Agent actions:

 up, right, down, left for the agent movement

 null, for restarting a new trial in a random initial position.

 Agent percepts pos(Row , Column , R , T) such that:

 Row and Column give the agent position on the grid

 R is the reward.

 T is n for non-terminal state and t for terminal state

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Environment Data Structures

 An m n grid is represented using a Boolean table walls and
a real table rewards of sizes 0 ... m+1 0 ... n+1. They are
extra padded with 2 rows and 2 columns representing the
grid walls as obstacles.

 Agent actions are represented using AgAction enumeration:
UP(0), RIGHT(1), DOWN(2), LEFT(3), NULL(4).

 Direction of action is represented using Direction
enumeration: CHANGE_LEFT(0), KEEP(1),
CHANGE_RIGHT(2).

 The offsets of the next agent position from the current
agent position is determined based on the agent action and
direction, using tables incRows and incColumns.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Belief Base

 Counter of states: last_state(StateCounter), initially 0.

 Counter of trials: last_trial(TrialCounter), initially 0.

 Last executed action: last_action(Action), initially null.

 terminal_state(State) and non_terminal_state(State) used in test
goals to check if agent’s current state is or not a final state.

 Upper bound of number of iterations: represented with
limit(UpperBound) and checked with below_limit(N).

 Agent’s fixed policy: a set of facts policy(State,Action), State =
s(Row,Column).

 Utility value and number of visits of each state:
utility(State,UtilityValue,Counter).

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Agent Plan Base – !keep_move

+!keep_move : pos(I,J,R,T) <- // Last perc. pos(I,J,R,T)

?last_action(A); // Determine the last action

St = s(I,J,T); // Det. the currently perceived state

!update(St,R,A); // Update for reaching state St with act A

?last_state(S);

M = S+1; // Incr counter for reaching crt state S

-+last_state(M);

-+state(M,pos(A,St,R)); // Save last state trans in BB

!continue_move(M,St). // continue moving

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Additional Agent Plans

 !continue_move(M,St)

 Controlled by below_limit(M) and terminal_state(St)

 Take one action by adopting goal !do_one_move(St)

 Call !keep_move

 !update(St,R,A)

 Update utility functions

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Experiments

 8 program runs

 50000 iterations, iteration = state visit

 Number of trials: 9358 (min), 9470.625 (avg), 9528
(max)

 We recorded utility values after each 1000 k trials,
for k = 1, 2, ..., 9, and the end of run

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Results

 U(3; 3) vs number of trials. The average number of
visits is n(3; 3) = 9281.625

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Optimizing Tail Recursion

 We have replaced the tail recursive calls to !keep_move with !!keep_move, to
make the execution of recursive plans more efficient by optimizing tail
recursion as iteration.

 1 run for 150000 of iterations and 28542 trials.

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Other Developments

 Experiments with other types of agents:

 Agents with faulty perception

 A GUI tool for setting up experiments with
TDL

 Extending the framework to active RL methods:

 Q-learning

 SARSA

 Extending the framework for MAS RL

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

Conclusion

 Development of a Jason program that implements a
Temporal Difference Learning agent.

 Representation of TDL problem using BDI
concepts: beliefs, plans and goals.

 Further developments and future works

August 26, 2016

16th Workshop on Software Engineering Education

Jahorina, Bosnia and Herzegovina

