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Motivation 

 

 

 Q: Experiment with using state-of-the-art 

AOP languages for agent learning  
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Agent Oriented Programming 

 Historically, AOP was firstly proposed more than 

20 years ago (Shoham, 1990) as: 

 

A new programming paradigm, one based on 

cognitive and societal view of computation 

 

 There are many models / implementations of AOP. 
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Reinforcement Learning 

 An RL agent is using the observed rewards (known 

also as reinforcements) part of its percepts, to learn an 

optimal policy for acting in an uncertain and dynamic 

environment (Sutton, 1998). 

 Passive RL: agents act according to a fixed policy and 

their learning goal is to compute the utility function. 

 Active RL: agents learn an optimal policy that maximizes 

their utility, while they are acting in their environment. 
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Benefits of Combining AOP and RL 

 From the AOP perspective, RL algorithms can provide a 
good benchmark for experimenting with AOP languages. 

 

 For RL, AOP can be an interesting approach supporting 
sound programming principles for the development of software 
agent systems. 

 

 Mixing AOP and RL results in new forms of hybrid reasoning 
that benefit by combining different reasoning mechanisms 
with complementary features into a single cognitive 
architecture (e.g. BDI reasoning and learning). 
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Temporal Difference Learning 

 Markovian environment E. 

 Stochastic environment. 

 The agent strategy is called policy  : E  A where  

a = (e) is the action carried out by agent in state e 

of the environment. 

 TDL is a passive RL method, i.e.: 

 the policy  is given, and  

 the agent’s goal is to determine the utilities of states. 
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Markovian Environment 

 The environment has a finite set E of states. 

 

 The agent has a finite repertoire A of available actions. 

 

 The next environment state e’ depends only on the current 

state e and the agent action a ; earlier environment states 

and agent actions are ignored. 

 

 Some agent states are terminal (final or goal) states. 
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Stochastic Environment 

 

 p(e’ | e , a) is the probability of the environment to 

transit into state e’ given its current state e and agent 

action a. 

 

 p is a probability distribution i.e. ∑e’p(e’ | e , a) = 1 for 

all e  E and a  A. 
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Utility Function 

 In each state e of the environment the agent receives a 

reward R(e)  IR. 

 An agent percept is a pair (e , R(e)). 

 The agent utility depends on the rewards received on each 

state of the environment history H(e) = [e = e0, e1, e2, ...]: 

 The utility function is additive with discounted rewards: Uh([e0, e1, e2, ...]) 

= ∑i  0 
i R(ei), where   (0,1] is the discount factor. 

 The utility U(e) for policy  is the weighted average of the utilities of 

each possible environment history H(e) starting in state e, i.e.: 

 U(e) = E[Uh(H(e))]. 
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Temporal Difference Equation 

 When the agent observes a transition e  e’, (s)he 

updates U(e) as follows: 

U(e)  U(e) + [R(e) +  U(e’) – U(e)] 

  parameter is called learning rate. Usually  is 

monotonically decreasing with the number n(e) of 

times the environment is in state e.  

 TDL does not need to estimate the stochastic 

model of the environment ! 
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AgentSpeak(L) and Jason 

 AgentSpeak(L) is an abstract AOP language, 

introduced by Rao in 1996. 

 Jason is an implementation, as well as an extension 

of AgentSpeak(L), based on Java. 

 The agent program is written in Jason. 

 The environment (management of environment state, agent 

percepts, effect of agent actions) are written in Java. 

 Agent architecture can be customized in Java. 
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Agent Program 

 Belief base set of Prolog-like facts & rules and it 

represents the agent memory. 

 Plans define the agent know-how. A plan is composed 

of event, context and body: 

e : c <- b  

 The belief base is continuously updated by plans 

during the agent reasoning cycle. 
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Agent Goals 

 

 The agent is working towards reaching achievement goals   !G. 

 

 Test goals ?G – used to retrieve information from belief base. 

 

 Using goals & events allows to have controllable flexibility in 

plans. 
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Environment Code 

 Environment class. 

 init() – to initialize the environment. 

 executeAction() – to update the environment 
state after the execution of each agent action 
(represented as a structured term using 
Structure class  

 addPercept() – to add percepts (represented 
using Literal class) to the environment.  
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Application Model 

Environment 

Agent 

action 

percept = (reward,state) 
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Sample Environment and Agent Policy 
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Agent Actions and Percepts 

 Agent actions: 

 up, right, down, left for the agent movement 

 null, for restarting a new trial in a random initial position. 

 Agent percepts pos(Row , Column , R , T) such that: 

 Row and Column give the agent position on the grid 

 R is the reward. 

 T is n for non-terminal state and t for terminal state 
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Environment Data Structures 

 An m  n grid is represented using a Boolean table walls and 
a real table rewards of sizes 0 ... m+1  0 ... n+1. They are 
extra padded with 2 rows and 2 columns representing the 
grid walls as obstacles. 

 Agent actions are represented using AgAction enumeration: 
UP(0), RIGHT(1), DOWN(2), LEFT(3), NULL(4). 

 Direction of action is represented using Direction 
enumeration: CHANGE_LEFT(0), KEEP(1), 
CHANGE_RIGHT(2). 

 The offsets of the next agent position from the current 
agent position is determined based on the agent action and 
direction, using tables incRows and incColumns. 
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Agent Belief Base 

 Counter of states: last_state(StateCounter), initially 0. 

 Counter of trials: last_trial(TrialCounter), initially 0. 

 Last executed action: last_action(Action), initially null. 

 terminal_state(State) and non_terminal_state(State) used in test 
goals to check if agent’s current state is or not a final state. 

 Upper bound of number of iterations: represented with 
limit(UpperBound) and checked with below_limit(N). 

 Agent’s fixed policy: a set of facts policy(State,Action), State = 
s(Row,Column). 

 Utility value and number of visits of each state: 
utility(State,UtilityValue,Counter). 
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Agent Plan Base – !keep_move  

+!keep_move : pos(I,J,R,T) <- // Last perc. pos(I,J,R,T) 

?last_action(A);  // Determine the last action 

St = s(I,J,T);    // Det. the currently perceived state 

!update(St,R,A);  // Update for reaching state St with act A 

?last_state(S); 

M = S+1;          // Incr counter for reaching crt state S 

-+last_state(M); 

-+state(M,pos(A,St,R));  // Save last state trans in BB 

!continue_move(M,St).    // continue moving 
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Additional Agent Plans 

 !continue_move(M,St)  

 Controlled by below_limit(M) and terminal_state(St) 

 Take one action by adopting goal !do_one_move(St) 

 Call !keep_move 

 !update(St,R,A) 

 Update utility functions 
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Experiments 

 8 program runs 

 50000 iterations, iteration = state visit 

 Number of trials: 9358 (min), 9470.625 (avg), 9528 
(max) 

 We recorded utility values after each 1000  k trials, 
for k = 1, 2, ..., 9, and the end of run 
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Results 

 U(3; 3) vs number of trials. The average number of 
visits is n(3; 3) = 9281.625 
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Optimizing Tail Recursion 

 We have replaced the tail recursive calls to !keep_move with !!keep_move, to 
make the execution of recursive plans more efficient by optimizing tail 
recursion as iteration. 

 1 run for 150000 of iterations and 28542 trials. 
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Other Developments 

 Experiments with other types of agents: 

 Agents with faulty perception 

 A GUI tool for setting up experiments with 
TDL 

 Extending the framework to active RL methods: 

 Q-learning 

 SARSA 

 Extending the framework for MAS RL 
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Conclusion 

 

 Development of a Jason program that implements a 
Temporal Difference Learning agent. 

 

 Representation of TDL problem using BDI 
concepts: beliefs, plans and goals. 

 

 Further developments and future works 
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